

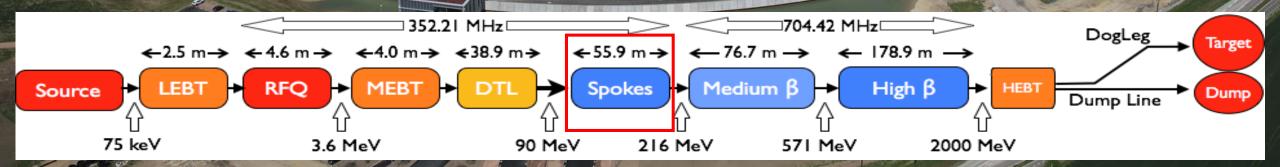
Experiences from the series double-spoke cavity cryomodules for ESS

Akira Miyazaki on behalf of FREIA team

Uppsala University

The FREIA team: international experts from different fields

2


ESS Campus Area

Gate

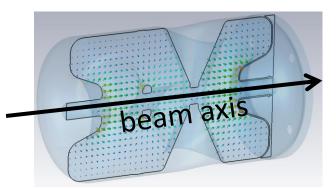
ESS Offices

Temporary Offices (now only contractors)

Loading B

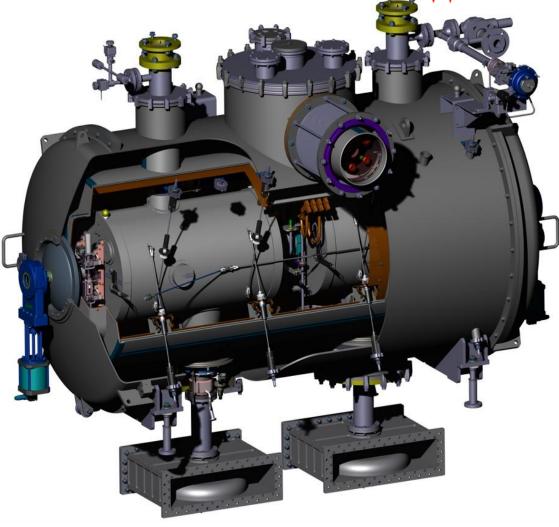
HU

Laboratories


UPPSALA JNIVERSITET

Assembly at Orsay \rightarrow Assessment at Uppsala \rightarrow Installation at Lund

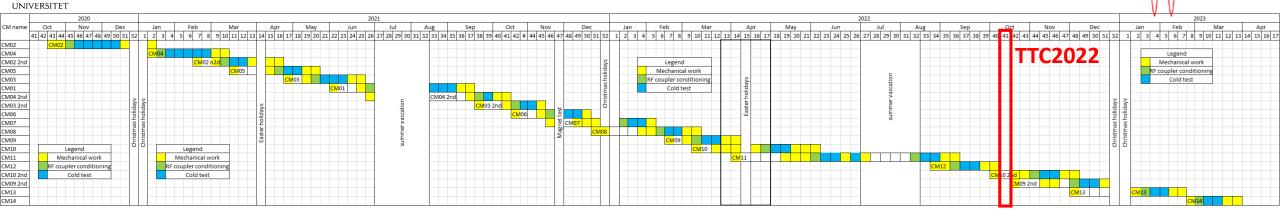
FREIR


ESS double-spoke cavity cryomodule (x13+1)

Operation parameters

- 90 MeV → 216 MeV
- Peak current 62.5 mA
- Bunch length 2.86 ms
- RF pulse length 3.2 ms
- Repetition rate 14 Hz
- RF duty cycle 4.5 %
- Temperature 2K
- Max RF power 335 kW

parameter	value
f [MHz]	352.210
β_{opt}	0.50
E _{acc} [MV/m]	9.0
$B_{pk}/E_{acc}(B_{pk})$	6.8 (61 mT)
E_{pk}/E_{acc} (E_{pk})	4.3 (38 MV/m
G [Ω]	133
R/Q [Ω]	427
L _{acc} [m]	0.639
Q _{ext}	1.75-2.85e5
BW [kHz]	1.2-2.0
Q ₀	>1.5e9

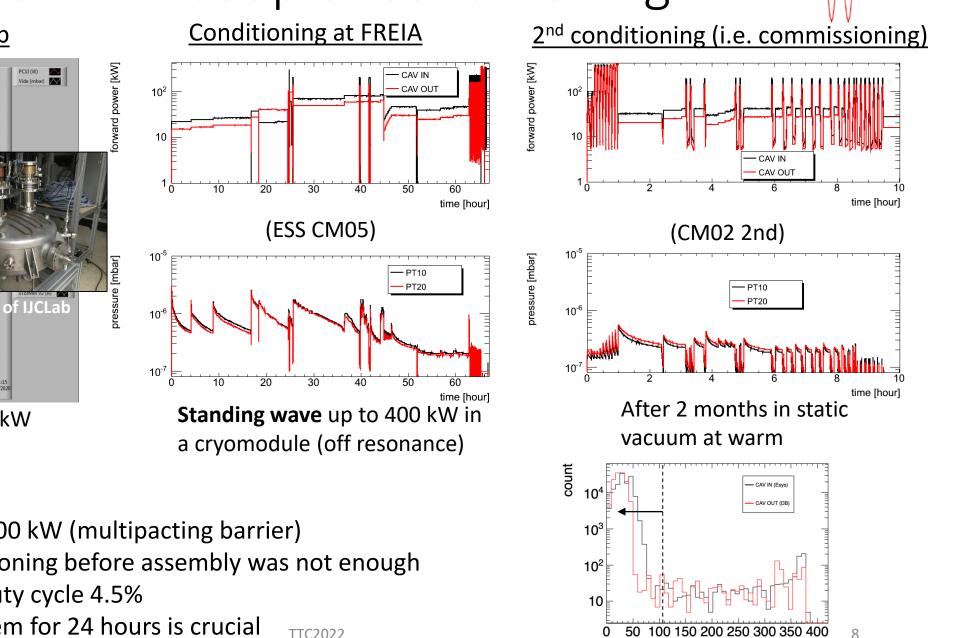


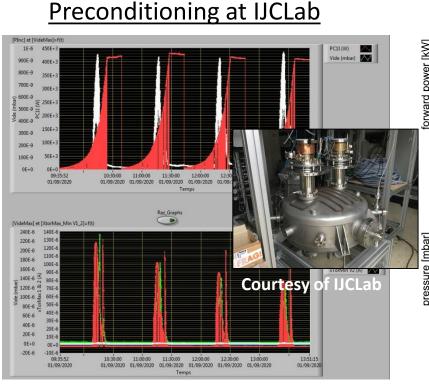
- ESS offers the first deployment of double-spoke cavities (difference from SNS)
- Practical challenges beyond mere R&D in the laboratory

1500 motor position (turns)

ESS spoke cavity modules at FREIA: progress and planning

FREIR


Qualification in the 1 st test Qualification in the 2 nd test	CM07, CM08, CM	CM06, 111)	Disqualified by FREM 5 (CM02, CM04, CM03, CM09, CM10) 0	3 (0) CM	,		year	e than two rs nonstop ng Covid-19
SCI Tuk	cuum leak in He double-wall be of a coupler	`	n M05, CM01, CM06, 08, CM10, CM11)	Found by IJCI 1 (CM0	₋ab	Found by FREIA 2 (CM04, C		To be tested 3 (CM12, CM13, CM14)
Gear head issue (?) ^{352,160} ^{352,160} ^{352,160} ^{352,160} ^{352,160} ^{352,160}	epper motor issue	, , , , , , , , , , , , , , , , , , ,	M06, CM01, CM07, 09, CM11, CM12)	0		4 (CM02, CM03, CM04, CM10)		2 (CM13, CM14)



Lessons learned & Performance statistics

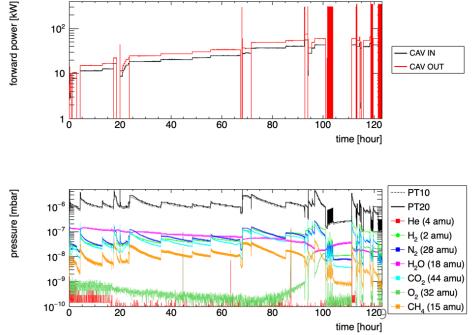
Warm RF coupler conditioning

forward power [kW]

Travelling wave up to 400 kW in a dedicated test bench

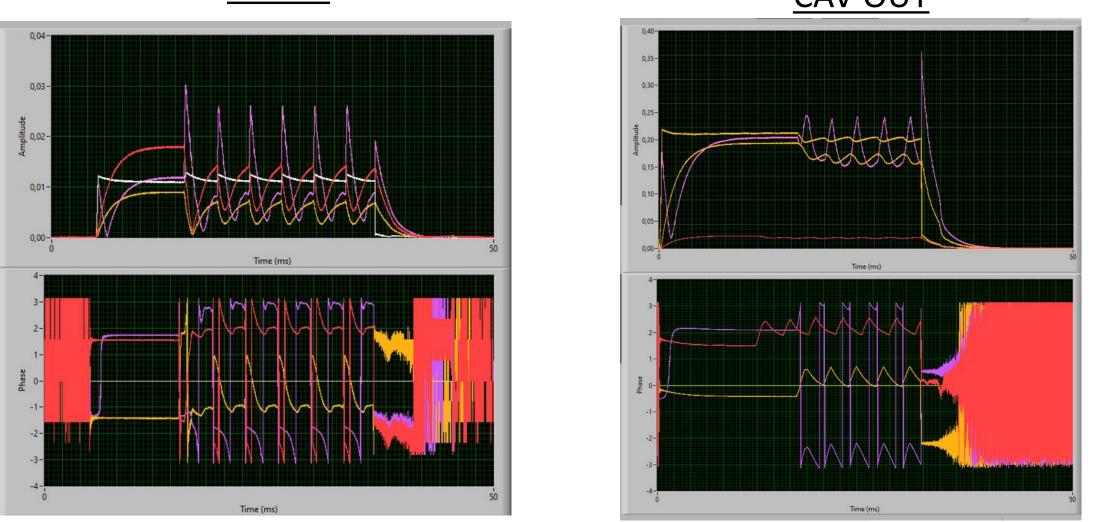
Lesson learned

- Out-gassing is below 100 kW (multipacting barrier)
- Travelling wave conditioning before assembly was not enough
- 24h x 3-4 days up to duty cycle 4.5% .
- Stability of the RF system for 24 hours is crucial .

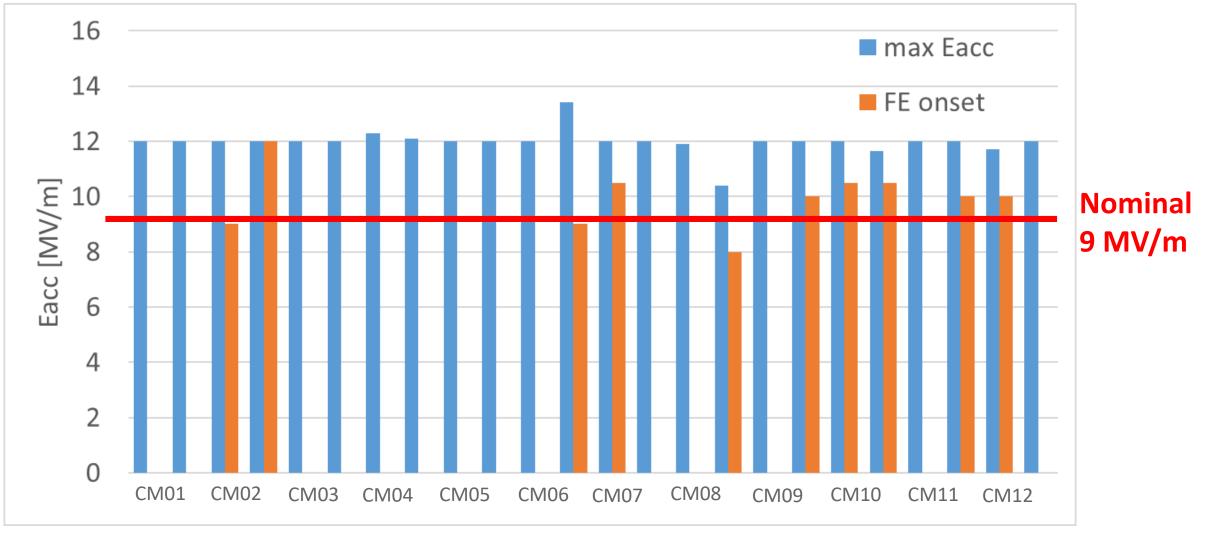

Warm coupler conditioning summary

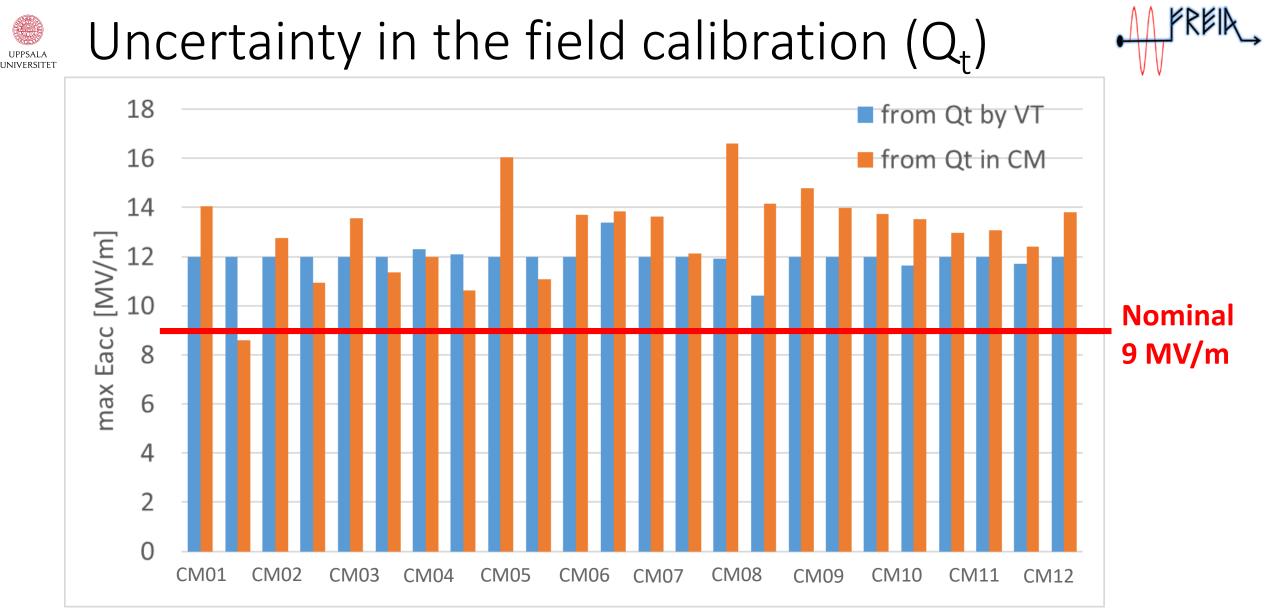
			FREIA_
•	V	V	

СМ	FPC1	FPC2	times	# of stations	# of pumps	Live time [hours]	•
CM02 1st	CPL01	CPL04	1 st	2	1	112	•
CM04 1st	CPL11	CPL03	1 st	2	1	67	
CM02 2 nd	CPL01	CPL04	2 nd	2	2	9	
CM05	CPL14	CPL18	1 st	2	2	66	•
CM03 1st	CPL06	CPL26	1 st	2	1	109	
CM01	CPL10	CPL12	1 st	2	2	90	
CM04 2 nd	CPL32	CPL05	1 st	1	2	147	
CM03 2 nd	CPL06	CPL26	2 nd	2	2	12	
CM06	CPL11	CPL20	1 st	2	2	66	
CM07	CPL25	CPL30	1 st	2	2	48	
CM08	CPL21	CPL15	1 st	2	2	65	
CM09	CPL27	CPL28	1 st	2	2	30	
CM10	CPL23	CPL24	1 st	2	2	10	
CM11	CPL22	CPL19	1 st	2	2	26	
CM12	CPL03	CPL09	1 st	2	2	92	


UPPSALA

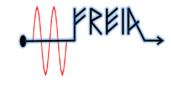
- Huge variation from 10 h to 92 h even with the same condition
- More active pumping during assembly reduces the necessary conditioning time (cf SPIRAL2)
- Residual Gas Analysis indicates peak at 15 amu and 28 amu which are typical sign of CH (cf plasma processing)


Local thermal quench at very low field (< 1 MV/m) <u>CAV IN</u> CAV OUT

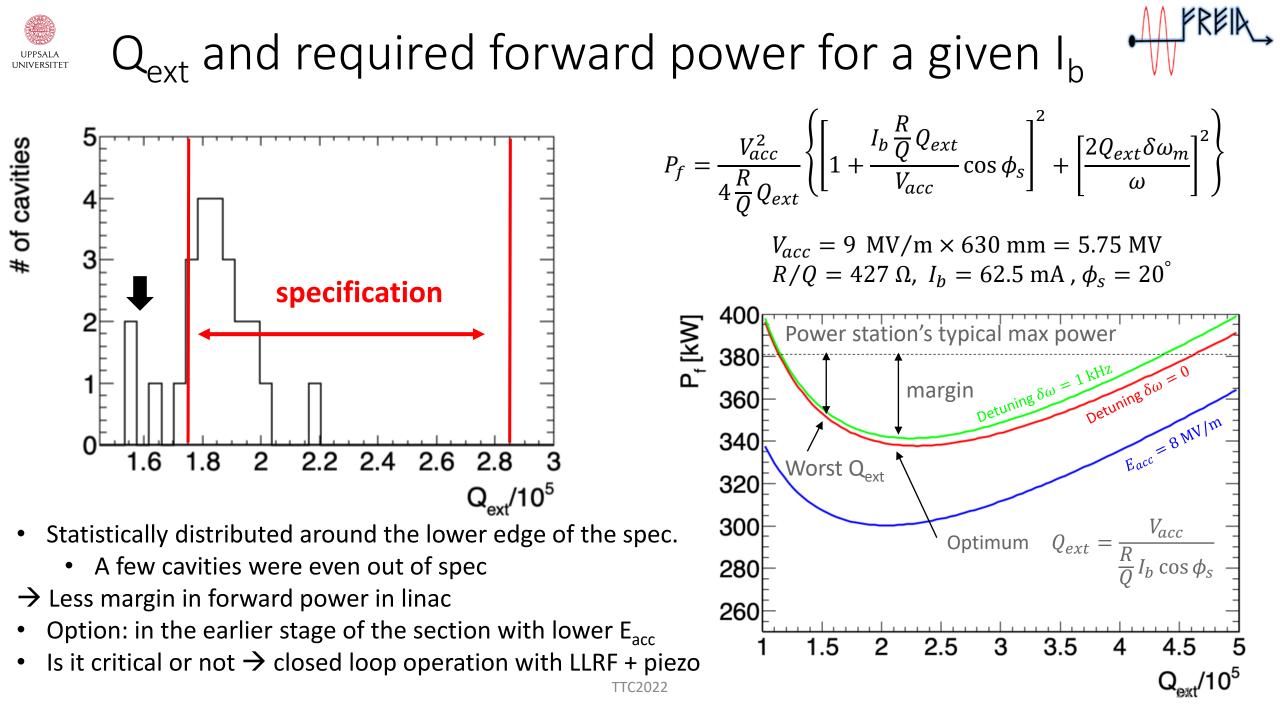

Local quench & thermal feedback is almost always observed at very low field in the spoke cryomodules so far \rightarrow special care (interlock) is mandatory

Accelerating gradient and field emission

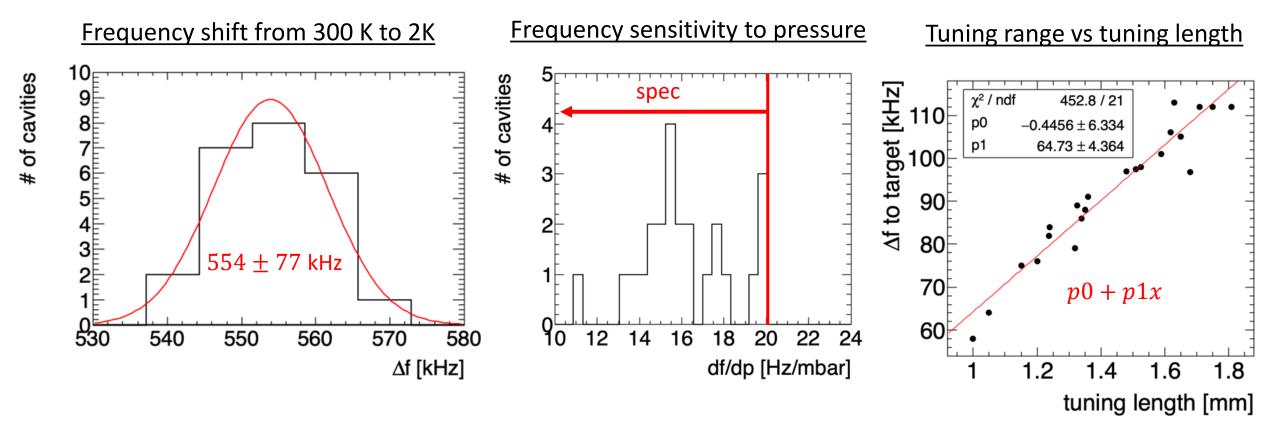
UPPSALA UNIVERSITE

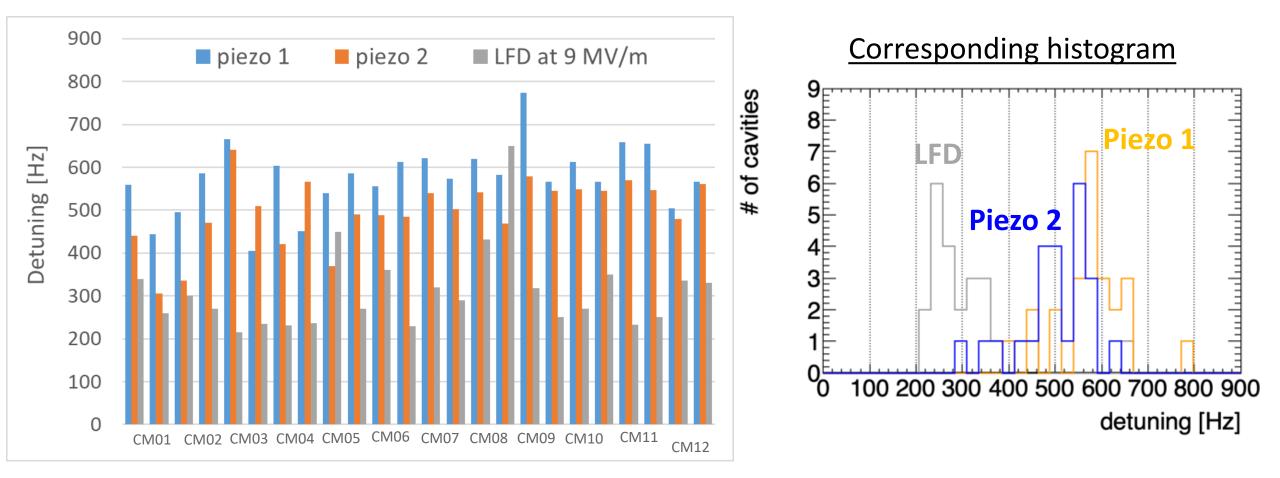


- All the cavities reached the nominal gradient 9 MV/m
- Some cavities showed field emission but probably safe (\rightarrow next slide)¹


- Q_t from Vertical Test generally *underestimates* the field value
- Error estimation in Q_t in CM is 10% mainly from power calibration's uncertainty
 - Stored energy estimated from the integral of decaying reflected power

Static and RF heat loads


- The temperature of the thermal screen is 80 K while the one in ESS is 40 K
 - Our static heat load is just a reference
- Gas helium flow in the exhaust line has been used to estimate the heat load
 - LHe level drop and pressurizing in closed volume have been taken as spare data
- Averaged static heat load is 16.5 W for each module
 - Thermo-acoustic oscillation has been observed in some cases in the prototype valve box
- Averaged total heat load (9 MV/m for both cavities) is 17.4 W for each module
- RF power dissipation (<2 W) is almost always within fluctuation of helium gas flow (1-2 W) for heat load estimation
 - This is because Q_0 is above spec and duty cycle is only 4.5%


Frequency tuning

- The frequency tuning is under control
- Mechanical stress might be a problem in the future project and discussions are on-going with MINERVA

Dynamic Lorentz force detuning vs piezo tuning range 🕂

- Piezo tuning range was with unipolar bias (0-200V) in quasi-static condition slower than 50V/1min
- LFD < piezo tuning range is generally applied and active piezo compensation would be feasible
- Simultaneous operation of two piezos or use one a spare

Field emission and thermal cycles (CM11)

80

70

60

50

40

30

20

10

2nd test after TC

2nd test after cond

3nd test after TC

VT@IJCLab × 10

adiation [mSv/h]

16

5 amu (CH

amu (CO, Cł

28 amu (N_, CO, C_

32 amu (O)

44 amu (CO

300

250

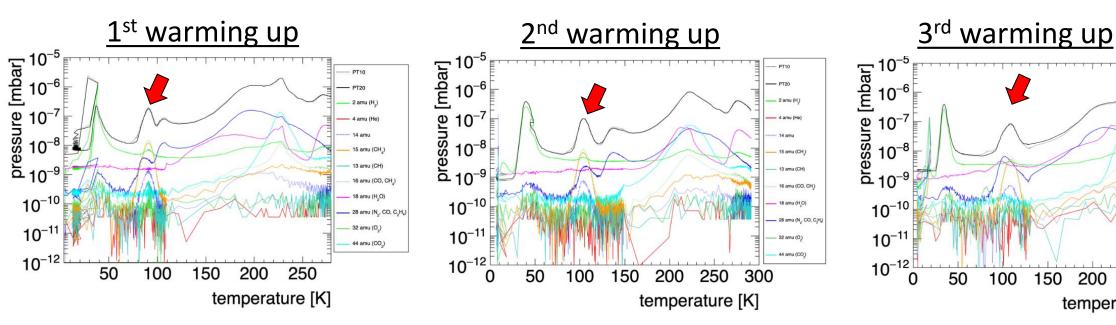
temperature [K

E_{acc} [MV/m]

1st

8

10

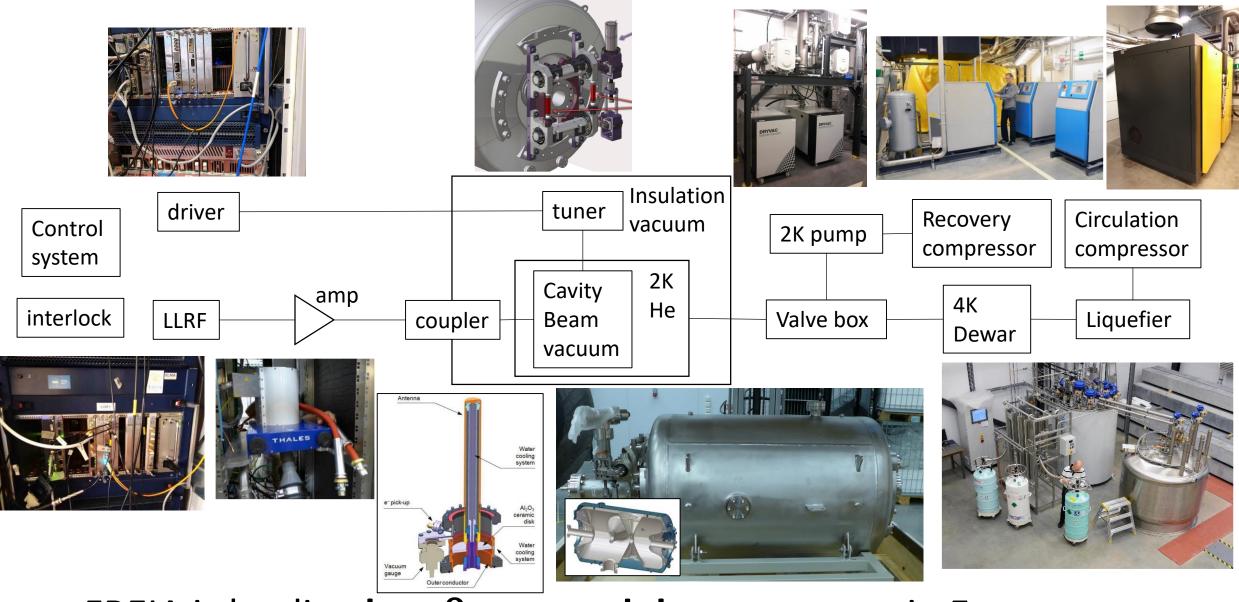

2nd

3rc

12

200

- Several thermal cycles dramatically mitigated a strong field emission
- The beam vacuum was never vented ullet
- Nothing except for the tuner was moved
- The residual gas analysis indicates outgassing of 15 amu (CH_4) and could be a sign of CH removal (?)
- \rightarrow Plasma processing in spoke cavities may give us some hints in this phenomena


Conclusion

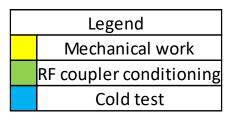
- FREIA laboratory in Uppsala University is in charge of qualification of series spokecavity cryomodules for ESS in collaboration with IJCLab
- 9 modules have been qualified and 5 modules will be tested by March 2023
- Lessons learned
 - Coupler conditioning in CM can take time but its duration has been statistically very different
 - Thermal quench happens at very low field and interlock setup is crucial even at very low field
 - All the cavities so far reached the spec (9 MV/m) with some disagreement of field calibration between vertical tests and high-power cryomodule tests
 - Field emission was observed in some of the cavities but may not be critical for the machine
 - External Q of couplers are statistically at the lower edge of the spec for unknown reason
 - The thermal screen temperature is different from ESS and static heat load may not be relevant
 - RF heat dissipation is so small that precise measurement seems not feasible
 - Coarse tuning was under control and piezos can compensate Lorentz force detuning
- Some speculations about field emission and potential CH contamination
 - This may motivate plasma processing studies in spoke cavities

backup

Challenges in cryomodules: complicated integration

FREIA is leading **low-β cryomodule** assessment in Europe

Standard test of one spoke-cavity module


week	1st week											
day	MON		TUE		WED		THU		FRI		SAT	SUN
uay	m	а	m	а	m	а	m	а	m	а		
activity	•	ire from say	n transport					reception reception test				
week						2st w	eek					
day	M	ON	T	JE	V	/ED	Tł	HU	FRI		SAT	SUN
	m	а	m	а	m	а	m	а	m	а		
activity	doorknob	mounting	installed	in bunker	cryogenic	connection	vacuum connection		tion RF calibration at warm		pumping	

week	3rd week											
dav	MON TUE		WED		THU		FRI		SAT	SUN		
uay	m	а	m	а	m	а	m	а	m	а		
activity		coupler warm conditioning								LN shiel	d cooling	

week	4th week											
day	MON		TUE		WED		THU		FRI		SAT	SUN
	y m a		m	а	m	а	m	а	m	а		
activity		ooling down to 4K 14 K filling l		thermaliz ation	2K pumping		multip		стѕ	test		
	f vs T mea	surement		coupler cold conditioning		calibration at cold	conditioning			test		

week		5th week											
dav	MON		TUE		WED		THU		FRI		SAT	SUN	
day	m	а	m	а	m	а	m	а	m	а			
activity		load rement	start war	ming up		warmii	ng up		warm comp				

week		6th week											
dav	MON		TI	JE	WED		THU		FRI		SAT	SUN	
day	m a		m	а	m	а	m a		m	а			
activity	out from bunker dismount doorknob, dry N2		out go	out going test		departure		at ESS	TTC20)22			

Main part of the test takes 4 weeks

Enevitable 18 days

- Pumping 3 days
- Coupler conditioning 24h x 3-4 days
- Thermalization 7 days for CTS
- Warming up 4 days

Mechanical work takes more than 1 week but **overlap** with other modules help

The closed loop operation of LLRF is not

included in the plan and was not tested except for the prototype module because

- Fully functional LLRF has not been ready
- Simply no time to fit the 4-weeks plan (additional one week must be considered)